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Abstract

Frequently, although a set of matrix differential operators will not be closed under, say, a Lie
bracket, it might be closed under more general Lie Γ -graded brackets. Some of these operator
products are defined using commutation factors for Γ . The classification of commutation factors,
and hence Lie Γ -graded brackets, is one of the stepping stones in an attempt to classify algebras
of matrix differential operators, generalizing a question outline in [Am. J. Math. 114 (6) (1992)
1163]. Many examples of Lie superalgebras of matrix differential operators exist, but there is
still a question of what other possible algebra products may close a space of matrix differential
operators. Studying Lie color algebras and Lie color superalgebras represents an attempt in this
direction. It is a curious fact that commutation factors for groups of the form (Z/2Z)n coincide
with homeomorphism-equivalence classes of connected compact 2-manifolds, so this coincidence
is also given in Section 4 of this paper. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

This note contains a complete classification of commutation factors for groups of the
form Γ ∼= (Z/2Z)n. In his classification of Lie superalgebras, [1], the author asks the
question of classifying the “generalized” superalgebras, those graded by a group of the
form (Z/2Z)n, instead of merely Z/2Z. However, before one can answer this question, one
must first determine what possible Lie Γ -graded structures might exist, and to answer this
one must classify commutation factors for Γ . The authors of [3] obtain this classification
for Γ ∼= (Z/2Z)n, but using slightly different terminology and notation. This note aims
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to clarify this classification in the terms of [4] and to relate this to the classification of
connected compact 2-manifolds. As it turns out, once one defines a particular equivalence
relation on the set of commutation factors for Γ ∼= (Z/2Z)n, the equivalence classes,
also referred in this paper to as reduced commutation factors, correspond exactly with
homeomorphism-equivalence classes of connected compact 2-manifolds.

The terminology “color” comes from [3]. Since every commutation factor gives rise to a
Lie Γ -graded bracket, sometimes we refer to commutation factors as colored brackets.

2. Generalities

First we need to discuss the general framework around commutation factors. These are
some results which follow very easily from the definitions.

Definition 2.1. LetΓ be an abelian group. A commutation factor is a map ε : Γ ×Γ → C
+

satisfying

ε(a, b)ε(b, a) = 1,

ε(a1 + a2, b) = ε(a1, b)ε(a2, b),

ε(a, b1 + b2) = ε(a, b1)ε(a, b2)

for all a, a1, a2, b, b1, b2 ∈ Γ . The diagonal map δ : Γ → C
+ associated with ε is the map

δ : a �→ ε(a, a).

Proposition 2.2. Let Γ be an abelian group and let ε be a commutation factor. Then (a)
ε(g, 0) = ε(0, g) = 1 for all g ∈ Γ , (b) the diagonal map δ is a homomorphism, and (c)
the image of δ lies in the two-element group C2 = {±1}.

Proof. (a) Notice that the map a �→ ε(a, g), by definition, is a homomorphism. Thus, we
have

ε(0, g) = ε(0 + 0, g) = ε(0, g)ε(0, g).

(b) Since ε(0, g) �= 0, we may divide to obtain ε(0, g) = 1.

δ(a + b) = ε(a + b, a + b) = ε(a, a + b)ε(b, a + b)

= ε(a, a)ε(a, b)ε(b, a)ε(b, b) = ε(a, a)ε(b, b) = δ(a)δ(b).

(c) Follows from (b) and the fact that δ(a)2 = 1. �

As is the case with the category of Lie algebras, there is a universal object which plays
a rôle similar to that of glnC for Lie algebras. That is, there is a “general linear” Γ -
graded algebra for every commutation factor ε. We construct this as follows. Suppose ε is a
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commutation factor for Γ and let V be a Γ -graded vector space,

V = ⊕
a∈Γ

Va.

The general linear Γ -graded algebra for ε is the space

gl(V , ε) = ⊕
a∈Γ
gl(V , ε)a,

where for each a ∈ Γ ,

gl(V , ε)a = ⊕
b∈Γ

Hom(Vb, Va+b)

equipped with the bracket

〈u, v〉 = u ◦ v − ε(a, b)v ◦ u
for u ∈ gl(V , ε)a and v ∈ gl(V , ε)b.

In this paper, we do not wish to study Lie Γ -graded algebras in much detail, but, due
to a generalization of Ado’s theorem, [4], we may give the following definition of Lie
Γ -algebras.

Definition 2.3. Suppose ε is a commutation factor forΓ . A space g equipped with a bracket
is a Lie Γ -graded algebra for ε if there is a vector space V and a map

g→ gl(V , ε).

If g = ⊕a∈Γ ga is a Lie Γ -graded algebra associated with ε, then the expected identities
hold, Γ -graded skew-symmetry

〈u, v〉 + ε(a, b)〈v, u〉 = 0, (1)

and the Γ -graded Jacobi identity

ε(c, a)〈〈u, v〉, w〉 + cyclic = 0 (2)

for u ∈ ga , v ∈ gb and w ∈ gc. Similarly, one may give the definition of a Lie Γ -graded
algebra in the opposite direction. That is, one may say that a Lie Γ -graded algebra is a
space g equipped with a bracket satisfying the two identities (1) and (2). If one chooses
this path, then one will quickly see that the function ε must necessarily be a commutation
factor. However, since in this paper we are primarily aiming at determining a particular
classification of commutation factors, we do not wish to spend much time on this question
and instead refer the reader to [4].

Notice that for every commutation factor, either ker δ = Γ or ker δ is a subgroup of index
two inΓ . We have some terminology to distinguish the types of LieΓ -graded algebras which
result. In the former case, g is called a “Lie color algebra” and in the latter case g is a “Lie
color superalgebra”.



4 D.A. Richter / Journal of Geometry and Physics 39 (2001) 1–8

3. The cases Γ = (Z/2Z)nΓ = (Z/2Z)nΓ = (Z/2Z)n

As the question was posed in [1], throughout this discussion we assume that Γ is iso-
morphic to (Z/2Z)n for some n. In particular, we give here a classification of commutation
factors for such groups. First of all, when we assume Γ is one of these groups, we have
some strong constraints on the image of ε.

Proposition 3.1. Suppose Γ is isomorphic to (Z/2Z)n for some n and suppose ε is a
commutation factor. Then (a) the image of ε lies in the two element group C2 = {±1} and
(b) ε(a, b) = ε(b, a) for all a, b ∈ Γ .

Proof. (a) As before, the map a �→ ε(a, g), by definition, is a homomorphism, so every
element x in the image of ε must satisfy x2 = 1. The solution set to this equation is {±1}.
(b) Suppose ε(a, b) = 1. Then we must have ε(b, a) = 1 because ε(a, b)ε(b, a) = 1 by
definition. Similarly, if ε(a, b) = −1, we must have ε(b, a) = −1. �

For each n we have the problem of classifying commutation factors for Γ ∼= (Z/2Z)b.
Obviously, every such commutation factor is determined by the values ε(ai, aj ) for a basis
{a1, . . . , an} of Γ , so this helps to formulate a notion of equivalence.

Definition 3.2. Suppose ε1 and ε2 are two commutation factors for Γ ∼= (Z/2Z)n. Then
ε1 and ε2 are equivalent if there are bases {a1, . . . , an} and {b1, . . . , bn} for Γ such that
ε1(ai, aj ) = ε2(bi, bj ) for all i and j .

If ε is an arbitrary commutation factor for Γ , there may be some “redundancies” which
we wish to eliminate. That is, if we think of commutation factors for (Z/2Z)n as particular
symmetric matrices with entries from {±1}, then we would like to ignore those with more
than one row or column filled with all 1s, as these can be reduced. Elaborating on this, we
have the following definition.

Definition 3.3. Given Γ and a commutation factor ε, let

Γ0 = {a ∈ Γ : ε(a, b) = 1 for all b ∈ Γ }.
If Γ0 consists of exactly one element, then ε is called a reduced commutation factor.

Evidently Γ0 is a subgroup of Γ . Accordingly, we can obtain a new commutation factor
for the group Γ/Γ0 by setting

ε0(a + Γ0, b + Γ0) = ε(a, b),

and it is also clear that such a commutation factor ε0 is reduced.
It is clear that if ε1 and ε2 are equivalent, then so are their reductions. We say that two

pairs (Γ1, ε1) and (Γ2, ε2) of groups and corresponding commutation factors are equiv-
alent if the reductions of ε1 and ε2 are equivalent. Let E denote the set of equivalence
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classes of these pairs. As we have seen, for each element of E, there is a “representative”
reduced commutation factor, and vice versa. For this reason, we may speak of the ele-
ments of E either as equivalence classes of pairs (Γ, ε) or simply as reduced commutation
factors. Thus our problem of classifying commutation factors reduces to that of classi-
fying reduced commutation factors. To obtain this classification, we need a couple key
lemmas.

Lemma 3.4. Suppose ε(a, b) = 1 for all a, b ∈ ker(δ) with a and b distinct and non-zero.
Then ε is a non-reduced commutation factor.

Proof. This is trivial if ker δ = Γ , so we assume there are elements c ∈ Γ with δ(c) = −1.
The proof is by contradiction. Suppose a, b ∈ ker δ is any such pair described in this
lemma. If ε were reduced then we would have ε(a, c) = ε(b, c) = −1 for every element
c ∈ Γ with δ(c) = −1. That is, the homomorphisms c �→ ε(a, c) and c �→ ε(b, c)

would be non-trivial. Since a and b are distinct and non-zero, we would therefore have
ε(a+b, c) = 1 for all c ∈ Γ . Since a+b is non-zero, ε would be non-reduced, leading to a
contradiction. �

The contrapositive of this lemma yields the following corollary.

Corollary 3.5. If ε is reduced and rank(ker δ) ≥ 2, then there is a pair {a1, a2} ⊂ Γ with
δ(ai) = 1 and ε(a1, a2) = −1.

This allows us to state the following lemma.

Lemma 3.6. Choose a1, a2 ∈ Γ such that δ(ai) = 1 for both i and ε(a1, a2) = −1 and
suppose {a1, a2, b3, . . . , bn} is a basis for Γ . For each i = 3, 4, . . . , n define elements
ai ∈ Γ by

ai =




bi if ε(a1, bi) = 1, ε(a2, bi) = 1,

bi + a1 if ε(a1, bi) = 1, ε(a2, bi) = −1,

bi + a2 if ε(a1, bi) = −1, ε(a2, bi) = 1,

bi + a1 + a2 if ε(a1, bi) = −1, ε(a2, bi) = −1.

Then (a) the set {a1, a2, a3, . . . , an} is a basis for Γ and (b) ε(ai, aj ) = 1 for i = 1, 2 and
j = 3, 4, . . . , n.

Proof. Part (a) is true because each ai is obtained by elementary row operations and part
(b) is true by construction. �

There is a useful interpretation of this lemma, but for this we first need to define a tensor
product of commutation factors, analogous to the tensor products of matrices. Suppose
Γ1 ∼= (Z/2Z)n1 and Γ2 ∼= (Z/2Z)n2 and that ε1 and ε2 are accompanying commutation
factors. Then the tensor product ε1 ⊗ ε2 is a commutation factor for the direct sum Γ1 ⊕Γ2
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and is given by the following formula:

(ε1 ⊗ ε2)((a1, a2), (b1, b2)) = ε1(a1, b1)ε2(a2, b2)

for ai, bi ∈ Γi . We sometimes omit the ⊗ symbol when writing a tensor product. Also,
there is a reduced commutation factor which serves as the identity, namely the identity map
itself I : Id × Id → Id. The tensor product on E, induced in the obvious way from the
tensor product between commutation factors, is commutative and associative, and this helps
to justify our omission of the symbol ⊗ when writing tensor products.

There are a couple of non-trivial reduced commutation factors which are important
enough to be named. We call them A and B and they can be given by the following tables:

Evidently we associateAwithZ/2Z andB with the Klein 4-groupK4 = (Z/2Z)⊕(Z/2Z).
Now we can interpret the preceding Lemma 3.6 as follows.

Corollary 3.7. Suppose ε is a reduced commutation factor for Γ such that rank(ker δ) ≥
2. Then there is a reduced commutation factor ε′ for Γ/K4 such that ε and ε′ ⊗ B are
equivalent.

Finally, as a corollary to this we obtain the classification of reduced commutation factors.

Theorem 3.8. Suppose ε is a reduced ε commutation factor for Γ = (Z/2Z)n. Then (a)
if ker δ = Γ , then ε is equivalent to Bn/2, (b) if ker δ ∼= Γ/(Z/2Z) and n is odd, then ε is
equivalent to AB(n−1)/2, or (c) if ker δ ∼= Γ/(Z/2Z) and n is even, then ε is equivalent to
A2B(n−2)/2.

Proof. Using the tensor-product interpretation of our Lemma 3.6, we may inductively
“factor” to obtain ε = ε′ ⊗ Br , where ε′ is a reduced commutation factor for a group of
rank two or less. The three cases (a), (b), and (c) allow for the three possible structures that
ε′ may have. If ker δ = Γ , ε′ is equivalent to B, giving us part (a). If n is odd, then, because
ε is reduced, ε′ must be a non-trivial commutation factor for the group Z/2Z, i.e. it must be
equivalent to A. This gives us case (b). Finally, if n is even and ker δ is a proper subgroup
of Γ , implying that ε′ is not equivalent to B, then ε′ must be equivalent to A2, giving us
part (c). �

There is a useful and interesting relation involving A and B.

Proposition 3.9. A⊗ A⊗ A and A⊗ B are equivalent.

Proof. Suppose {a1, a2, a3} is a basis for (Z/2Z)3 such that ε(ai, ai) = −1 for all i and



D.A. Richter / Journal of Geometry and Physics 39 (2001) 1–8 7

ε(ai, aj ) = 1 for all i �= j . Then, by construction, ε is equivalent to A⊗A⊗A. Consider
a new basis {b1, b2, b3}, where

b1 = a2 + a3, b2 = a1 + a3, b3 = a1 + a2 + a3.

It is easy to compute that the values ε(bi, bj ) for this basis are given in the table:

This exhibits ε as being equivalent to A⊗ B. �

Because of this relation, we can restate the classification Theorem 3.8 more concisely.

Theorem 3.10. Every non-trivial reduced commutation factor is equivalent to either An

or Bn for some positive integer n.

4. 2-Manifolds

As it turns out, the classification of reduced commutation factors coincides exactly
with that for connected compact 2-manifolds. Let M denote the set of homeomorphism-
equivalence classes of connected compact 2-manifolds. For any two elements X1 and X2

inM, we can form the connected sum X1#X2. This is obtained cutting discs out of X1 and
X2 and then identifying the resulting boundaries homeomorphic to S1. This operation is
commutative and associative and the sphere S2 serves as an identity element. If P = RP 2

denotes the real projective plane and T = S1 × S1 denotes the torus, then we have the
following proposition, from [5].

Proposition 4.1. P#P#P and P#T are homeomorphic.

We can now define a map ϕ ofM into E

Proposition 4.2. There is a bijection ϕ : M → E which is uniquely determined by the
conditions: (a) ϕ(P ) = A, (b) ϕ(T ) = B, and (c) ϕ(X#Y ) = ϕ(X)⊗ ϕ(Y ).

Proof. This follows from the complete classification of closed compact 2-manifolds. See
[2]. �

Many readers should recognize that ϕ merely delivers a kind of intersection matrix for
these manifolds, and that the preservation of the “algebraic” relation is merely a reflec-
tion of the relationship of the connected sum with the intersection matrix. Thus, reduced
commutation factors give a faithful invariant for compact connected 2-manifolds.
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